microstructures but not for others. The excess temperature dependence appears to depend on a thermally activated process rather than the free volume process that governs viscosity for linear polymers. The activation energies were used to estimate activation coefficients for the various species. A rough connection was established between these values and the temperature coefficient of chain dimensions for the species. For the saturated polymers, corresponding in microstructure to copolymers of ethylene, there appears to be a systematic relationship with the mole fraction of counit. The results are in general accord with expectations based on the difference in relaxation mechanisms available to entangled linear and branched poly-

Acknowledgment. This work was supported by the National Science Foundation (CPE80-00030), the Northwestern University Materials Research Center (DMR-23573), the National Research Council of Argentina (CONICET), and a grant from Exxon Chemical Company. We are grateful to Gary VerStrate and L. J. Fetters for discussions, samples, and help with molecular character-

Registry No. Polyisoprene (homopolymer), 9003-31-0; polybutadiene (homopolymer), 9003-17-2.

References and Notes

- (1) Current addresses: (a) Plapiqui, 8000 Bahia Blanca, Argentina; (b) IBM Corp., Systems Technology Division, Endicott NY 13760; (c) Corporate Research Laboratories, Exxon Research

- and Engineering Co., Annandale, NJ 08801.

 (2) Berry, G. C.; Fox, T. G. Adv. Polym. Sci. 1968, 5, 261.

 (3) Graessley, W. W. Acc. Chem. Res. 1977, 19, 332.

 (4) Small, P. A. Adv. Polym. Sci. 1975, 18, 1.

 (5) Ferry, J. D. "Viscoelastic Properties of Polymers", 3rd ed.; Wiley: New York, 1980.
- Rockefort, W. E.; Smith, G. G.; Rachapudy, H.; Raju, V. R.; Graessley, W. W. J. Polym. Sci., Polym. Phys. Ed. 1979, 17,

- (7) Roovers, J.; Graessley, W. W. Macromolecules 1979, 12, 959.
- Roovers, J.; Graessley, W. W. Macromolecules 1981, 14, 766. (9) Raju, V. R.; Menezes, E. J.; Marin, G.; Graessley, W. W.; Fetters, L. J. Macromolecules 1981, 14, 1668.
- (10) Pearson, D. S.; Helfand, E. Faraday Symp. Chem. Soc. 1983, 19, 189; Macromolecules 1984, 17, 888.
- (11) de Gennes, P.-G. J. Phys. (Les Ulis, Fr.) 1975, 36, 1199.
 (12) Graessley, W. W.; Masuda, T.; Roovers, J.; Hadjichristidis, N. Macromolecules 1976, 9, 127.
 (13) Doi, M.; Kuzuu, N. Y. J. Polym. Sci., Polym. Lett. Ed. 1980,
- 18, 775.
- (14) Graessley, W. W. Adv. Polym. Sci. 1982, 47, 67.
- (15) Klein, J.; Fletcher, D.; Fetters, L. J. Faraday Symp. Chem. Soc. 1983, 18, 159.
- (16) Mendelson, R. A.; Bowles, W. A.; Finger, F. L. J. Polym. Sci., Polym. Phys. Ed. 1970, 8, 105.
- (17) Rokadai, M., unpublished measurements.
- (18) Raju, V. R.; Rachapudy, H.; Graessley, W. W. J. Polym. Sci., Polym. Phys. Ed. 1979, 17, 1223.
- (19) Graessley, W. W.; Raju, V. R. J. Polym. Sci., Polym. Symp. (19) Graessley, W. W., Itaju, V. R. J. Josynt. Sci., 1 organ. Symp. 1984, No. 71, 79.
 (20) Graessley, W. W. Macromolecules 1982, 15, 1164.
 (21) Gotro, J. T.; Graessley, W. W. Macromolecules 1984, 17, 2767.
 (22) Carella, J. M.; Graessley, W. W.; Fetters, L. J. Macromolecules 1984, 17, 277.

- 1984, 17, 2775.
- (23) Pearson, D. S., private communication.
 (24) Flory, P. J. "Statistical Mechanics of Chain Molecules"; Interscience: New York, 1969. (25) Graessley, W. W.; Edwards, S. F. Polymer 1981, 22, 1329.

- (26) Fetters, L. J., private communication.(27) Gotro, J. T. Ph.D. Thesis, Materials Science Department, Northwestern University, Evanston, IL, 1983.
- (28) Carella, J. M. Ph.D. Thesis, Chemical Engineering Department, Northwestern University, Evanston, IL, 1983.
- (29) Huber, K.; Burchard, W.; Fetters, L. J. Macromolecules 1984,
- (30) Mark, J. E. J. Polym. Sci., Macromol. Rev. 1976, 11, 135; Rubber Chem. Technol. 1973, 46, 593.
 (31) Mark, J. E. J. Chem. Phys. 1972, 57, 2541.

- (32) Mark, J. E.; Llorente, M. A. Polym. J. (Tokyo) 1981, 13, 543.
 (33) Krigas, T. M.; Carella, J. M.; Struglinski, M. J.; Crist, B.; Graessley, W. W.; Schilling, F. C. J. Polym. Sci., Polym. Phys.
- Ed. 1985, 23, 509. Yoon, D. Y.; Sundararajan, P. R.; Flory, P. J. Macromolecules 1975, 8, 776.

Examination of the Critical Parameters in the Constrained Junction Theory of Rubber Elasticity

R. W. Brotzman*† and J. E. Mark

IBM Research Laboratory, San Jose, California 95193. Received June 26, 1985

ABSTRACT: Stress-strain data previously obtained for a wide variety of unswollen and swollen polymer networks in elongation are interpreted by using the Flory-Erman theory of rubber elasticity. The interpretation is carried out as objectively as possible, with theoretical curves chosen on the basis of minimum residuals between theory and experiment and with realistic estimates of the uncertainties involved. High-elongation values of the reduced stress obtained from the theoretical curves were found to be very nearly independent of the degree of swelling. They differed significantly, in some cases, from the intercepts $(2C_1)$ obtained by simple linear extrapolations of the data. Low-elongation values, however, are quite close to the linearly extrapolated values. In the theory employed, the reduced stress depends on the extent to which junction fluctuations are constrained, which in turn depends on the degree of interpenetration of the chain configurational domains. Values of an interpenetration parameter, although defined to account for the configurational characteristics of the chains investigated, were unfortunately found to show some dependence on the degree of swelling and the nature of the elastomeric chains.

Introduction

The most general molecular theory of rubber elasticity treats both "phantom" networks (in which the chains can transect one another and cross-links can fluctuate freely)

[†]Current address: Department of Chemistry/CUNY, Staten Island, NY 10301.

and real networks (in which chain entangling constrains these fluctuations). 1-3 It has been used with considerable success in interpreting stress-strain measurements, in particular the elongation dependence of the reduced stress defined by

$$[f^*] = f^*(V/V^{\circ})^{-1/3}(\alpha - \alpha^{-2})^{-1}$$
 (1)

where f^* is the tensile force per unit area in the reference

Table I Characteristics of the Polymers

polymer	repeat unit	$M_0{}^a$	l^2 , b A^2	d , g cm $^{-3}$	$\langle r^2 angle_0/n l^{2c}$
poly(dimethylsiloxane)	-[Si(CH ₃) ₂ O-]	37.1	2.69	0.970	7.8
cis-1,4-polybutadiene	-[CHCHCH ₂ CH ₂ -]	13.5	2.20	0.903	4.9
polyisobutylene	$-[C(CH_3)_2CH_2-]$	28.1	2.34	0.915	6.5
poly(oxyethylene)	$-[(CH_2)_2O-]$	14.7	2.14	1.10	5.2
poly(oxypropylene)	$-[CH(CH_3)CH_2O-]$	19.4	2.14	0.998	5.0
poly(tetramethylene oxide)	$-[(CH_2)_4O-]$	14.4	2.22	0.982	6.1
$poly(\epsilon$ -caprolactone)	$-[(CH_2)_5COO-]$	16.3	2.22	1.09	6.1
poly(ethyl acrylate)	$-[CH_2CHCOOC_5H_5-]$	50.1	2.34	1.09	8.5
poly(dimethoxyphosphazene)	$-[P(OCH_3)_2N-]$	53.5	2.43	1.44	10^d
poly(phenoxy(p-ethylphenoxy)phosphazene)	$-[P(OC_6H_5)(OC_6H_4C_2H_5)N-]$	129.6	2.43	1.26	32

^a Molecular weight per skeletal bond. ^b Mean-square skeletal bond length. ^c Characteristic ratio, where $\langle r^2 \rangle_0$ is the unperturbed dimensions and n the number of skeletal bonds. ^d Arbitrary estimate.

state, V° is the volume of the reference state, V is the system volume at measurement, and α is the extension ratio relative to the length of the sample when isotropic at the same volume V. The reduced stress for a phantom network equivalent to a real network under investigation would be

$$[f^*]_{\rm ph} = \xi k T / V^{\circ} \tag{2}$$

where ξ is the cycle rank of the network. In real networks there is a contribution f_c to the force that arises from network chain constraints on the cross-link fluctuations. It is a function of ξ , the cross-link functionality ϕ , the severity of the constraints κ , and the degree of nonaffineness in the strain-induced attenuation of the constraints ξ .^{2,3} Thus, for a real network

$$[f^*] = [f^*]_{ph}(1 + f_c/f_{ph})$$
 (3)

where f_{ph} represents the force that would be exerted by a topologically equivalent phantom network measured under identical conditions.

The parameter κ depends on the degree of chain interpenetration and may be written³

$$\kappa = I[N_{\rm a}d\langle r^2\rangle_0/M_0]^{3/2}(kT/[f^*]_{\rm ph})^{1/2}[(\phi - 2)/\phi]^{3/2}[2/(\phi - 2)] \enskip (4)$$

where I is a proportionality constant, N_a Avogadro's number, d the density, $\langle r^2 \rangle_0$ the mean-square unperturbed dimensions of the chains, M_0 their molecular weight per skeletal bond, k the Boltzmann constant, and T the absolute temperature. Deletion of the functionality dependence permits definition of an interpenetration parameter

$$J = \kappa [M_0/N_a dl^2 C_{\infty}]^{3/2} ([f^*]_{\rm ph}/kT)^{1/2}$$
 (5)

in which C_{∞} is the characteristic ratio $\langle r^2 \rangle_0 / n l^2$ in the limit of large n, where n is the number of chain skeletal bonds, and l^2 is their mean-square length.

The present study was undertaken to interpret stressstrain isotherms in elongation reported by one of the present authors for a wide variety of elastomeric networks. The primary goal is characterization of possible trends in κ and J with changes in the chemical nature of the elastomer, its cross-link functionality, degree of cross-linking, and degree of swelling.

Preparation and Some Characteristics of the Networks

The polymers used to prepare the elastomer networks were poly(dimethylsiloxane) (PDMS), cis-1,4-polybutadiene (PBD), polyisobutylene (PIB), poly(oxyethylene) (POE), poly(oxypropylene) (POP), poly(tetramethylene oxide) (PTMO), poly(ε-caprolactone) (PCL), poly(ethyl acrylate) (PEA), poly(dimethoxyphosphazene) (PDMP), and poly(phenoxy(p-ethylphenoxy)phosphazene)

(PPEP). Their chemical structures and some of their other relevant characteristics are given in Table I.

Two series of PDMS networks were prepared, the first⁴ by γ irradiation and the second⁵ by end-linking reactive chains. The polymer used in the first series had a molecular weight of approximately 0.5×10^6 and, to facilitate cross-linking, had unsaturated groups present to the extent of 0.5 mol% -Si(CH₃)(CH=CH₂)O- repeat units. Three portions were given γ radiation doses of 0.90, 0.77, and 0.63 Mrad. Extractions of the resulting tetrafunctional networks gave sol fractions of 0.117, 0.125, and 0.134, respectively. The swelling diluent used (during the elasticity measurements) was a linear dimethylsiloxane fluid having a degree of polymerization of approximately 160. The second series was prepared from a sample of PDMS having a number-average molecular weight, $M_{\rm p}$, of 11.3×10^3 and vinyl groups at both ends of at least 95% of the chains. Cross-link functionalities ranging from 3 to 11 were obtained (with partially successful attempt at $\phi = 37$) by end-linking the chains with multifunctional silanes. Sol fractions were in the range 0.033-0.061.

The PBD sample employed was of high molecular weight and was at least 94% cis-1,4 in stereochemical structure.⁶ The network PBD-S was cross-linked with 1 wt % sulfur at 150 °C for 2 h and was assumed to have a cross-link functionality of 4. The diluent used to swell it was 1,2,4-trichlorobenzene. The second network, PBD-G, was cross-linked by γ radiation, under vacuum and at room temperature, to a dose of 11.2 Mrads. Network PBD-P was cross-linked by using 1 wt % benzoyl peroxide at 120 °C for 1 h. Because of the likelihood of free-radical polymerization of the double bonds in the latter two networks, 7,8 their cross-link functionality is not reliably known, and values of both 4 and 24 were adopted.8 The swelling diluent for the two networks was 1,2-dichloro-

Three PIB networks were prepared from mixtures of butyl rubber with suitable curing agents, primarily disulfides.9 Variation in the mol % unsaturation in the polymer and in the amount of curing agents was used to obtain different degrees of cross-linking. The reactions were carried out at 150 °C, under vacuum, for 1 h. The tetrafunctional networks thus prepared had sol fractions that ranged from 0.085 to 0.138. The swelling diluent employed was 1,2,4-trichlorobenzene.

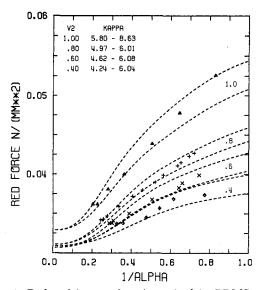
Four POE networks were obtained by end-linking hydroxyl-terminated chains having values of $M_{\rm n}$ of 0.880×10^3 , 1.46×10^3 , 3.25×10^3 , and 6.82×10^3 . The endlinking agent was an aromatic triisocyanate ($\phi = 3$), and the reactions were carried out under vacuum at 95 °C for 50 h. Sol fractions ranged from 0.031 to 0.067, and the swelling diluent was phenylacetate. The same reaction was used to prepare four POP networks from atactic chains having values of M_n of 0.800×10^3 , 0.920×10^3 , 1.98×10^3 ,

and $3.70\times10^3,^{11}$ a single PTMO network with $M_{\rm n}=0.880\times10^3,^{10}$ and four PCL networks with $M_{\rm n}=0.570\times10^3,$ $0.910\times10^3,$ $1.31\times10^3,$ and $1.95\times10^3.^{12}$ Sol fractions were in the range 0.001-0.040.

The PEA sample employed was atactic and had a molecular weight of approximately $2.9 \times 10^{6.13}$ It was cross-linked into four tetrafunctional networks by using γ -radiation doses of 5.0–48 Mrad.

Two tetrafunctional phosphazene networks were prepared from high molecular weight samples of PDMP and PPEP by using γ radiation.¹⁴ The doses employed were 24.7 and 17.6 Mrad, respectively, and the sol fractions were 0.08 and 0.16, respectively.

Stress-Strain Measurements


Stress-strain isotherms had been obtained on the extracted networks in elongation at the temperatures and degrees of swelling specified in columns 3 and 4 of Table Measurements had been conducted in a way permitting elastic equilibrium to be approached as closely as possible. Details are given in the original publications. 4-6,9-14 Excluded from consideration here were results obtained at elongations sufficiently high to cause increases in stress from strain-induced crystallization or limited chain extensibility.

Data Treatment

The objective of this study is not only to determine the best theoretical fit to a given reduced-force isotherm, but also to include realistic estimates of the experimental error inherent in each isotherm. A family of reduced-force isotherms is generated via eq 3 and 43 of ref 2 for each data set by fixing the values of $[f^*]_{ph}$, ζ , and ϕ (determined by the chemistry of the system) and varying κ . Each curve within this family is scrutizinized by summing the squared differences between the theoretical and experimental reduced force values and dividing this sum by the number of points comprising the reduced-force isotherm; this result is the mean residual of error (MRE). The curve within this family that minimizes the MRE is selected as the best fit with respect to κ for a given value of $[f^*]_{ph}$ (MRE- κ). In a stepwise fashion, $[f^*]_{ph}$ is varied (ζ and ϕ remain constant), and the entire minimization procedure is repeated; a series of MRE- κ curves is generated. From this series of curves (MRE- κ), which represent a range in $[f^*]_{ph}$, the curve with the smallest MRE is chosen as the best fit to the experimental isotherm (BF-MRE). The values of ζ , $[f^*]_{\rm ph}$, and κ for the BF-MRE curves are listed in Table II. The best-fit parameters and the polymer characteristics (Table I) are used to calculate J from eq 5; the values of J are listed in Table II.

For each network the values of $[f^*]_{\rm ph}$ and J at different degrees of swelling are averaged; these average parameter values when $\zeta = 0$ are given in Table III. An average value of J for each polymer at all degrees of cross-linking and swelling is determined and given in this table.

We acknowledge two sources of error: the average value of $[f^*]_{ph}$ for a given network may vary by approximately ±5%, and an individual datum point may vary by 10%. The latter condition is examined by changing one datum point by plus 10% of its value and following the above procedure to determine the mean residual of the modified isotherm with respect to the theoretical curve generated by using the parameters reported in Table II. This procedure is repeated by sequentially changing each datum point in the isotherm by first plus 10% and then minus 10% of its value. The resulting residuals are averaged, and an acceptable range of residual values is established as those between this averaged value and that of the mini-

Figure 1. Reduced force as functions of α^{-1} for PDMS swollen to varying degrees with a linear dimethylsiloxane. The points represent experimental results of Chiu and Mark⁴ for specimens of their sample irradiated with 0.90 Mrad and swollen to the extents indicated by the values of the volume fraction to the right of each isotherm and also in the inset in the upper left of this figure. The dashed curves were calculated according to theory with $\zeta = 0.0$ and κ values given in the inset.

mum residual value (BF-MRE) generated by using the best-fit parameters given in Table II. The former error condition is utilized by determining those values of κ for each $[f^*]_{ph}$ value within $\pm 5\%$ of the average $[f^*]_{ph}$ value, which generates a residual within the acceptable residual range; the corresponding J values were also determined.

For each reduced-force isotherm, we objectively determined the range in $[f^*]_{ph}$ with accompanying κ values that yield J values close to the average polymer J values given in Table III. The parameter ranges identified by this criterion are listed in Table IV and termed best parameter values.

Each curve in representative Figures 1-7 is generated by selecting the $[f^*]_{\rm ph}$ value from the best parameter values (Table IV, column 6) that is closest to the averaged $[f^*]_{\rm ph}$ value (Table IV, column 4); these $[f^*]_{ph}$ values are listed in column 4 of Table V. The dotted lines in each figure represent the theoretical curves generated by using the extrema in acceptable κ values for the chosen value of $[f^*]_{\mathrm{ph}}$.

Discussion of Results

Figures 1-3 illustrate the effect of ζ on the theoretical description of the PDMS data in the first data grouping in our tables. For each dilution, the $\zeta = 0$ curves given in Figure 1 represent the data better than the curves for higher ζ . For each dilution the data fall within the dotted curves generated from the extremes in κ as indicated in each figure. In Figures 2 and 3 5 increases, the resultant theoretical representations become increasingly sigmoidal. and reasonable fits to the data cannot be obtained throughout the dilution range. A similar & dependence is seen for the PBD-S data in Figures 4 and 5; at the higher \(\cdot \text{value, the theoretical curves become sigmoidal at low} \) dilution and fits to the data become poor. The same \(\zeta \) behavior is seen in each system examined by this study. Therefore, the best results are achieved for $\zeta = 0$; Table V contains these results.

Figures 1, 4, 6, and 7 give the $\zeta = 0$ curves and experimental data for PDMS*, PBD-S*, PIB*, and POE*, respectively. (The asterisk superscript designates which

Table II
Experimental Variables and Parameters for the Best-Fit Isotherms

PDMS** 4 30 1.00 0.00 0.0325 7.66 0.112	polymer	ϕ^a	T, °C	$v_2{}^b$	ζ°	[f*] _{ph} , ^d N mm ⁻²	κ ^e	J^f
0.86	PDMS*g	4	30				7.66	0.112
				0.80				
0.40				0.60			4 10	
1.00				0.40	0.00		3.96	
0.86							6.75	
PDMS 4 30 1.00 0.00 0.00 0.028 4.74 0.064 0.065 0.008				0.80				
PDMS 4 30 1.00 0.00 0.00 0.0133 4.69 0.6897 PDMS 4 30 0.00 0.00 0.00 0.0245 1.47 0.0044 PDMS 4 30 0.00 0.00 0.00 0.0245 1.47 0.0044							5.02	
PDMS 4 30 1.00 0.00 0.0386 6.94 0.008 0.00 0.009				0.40			4.69	
PDMS 4 30 0.00 0.00 0.0341 6.09 0.0915 PDMS 4 30 1.00 0.00 0.00233 9.96 0.150 0.00 0.00 0.00233 14.3 0.0814 0.00 0.00 0.00238 4.74 0.0844 0.00 0.00 0.00238 4.74 0.0844 0.00 0.00 0.00238 4.74 0.0844 0.00 0.00 0.00238 4.74 0.0844 0.00 0.00 0.00238 14.74 0.0844 0.00 0.00 0.00238 14.74 0.0844 0.00 0.00 0.00238 18.23 0.150 0.00 0.00 0.00238 18.23 0.150 0.00 0.00 0.00139 10.8 0.100 0.00 0.00 0.0139 10.8 0.100 0.00 0.00 0.0139 10.8 0.100 0.00 0.00 0.0139 10.8 0.100 0.00 0.00 0.0139 10.8 0.100 0.00 0.00 0.0139 10.8 0.100 0.00 0.00 0.0138 4.72 0.154 0.00 0.00 0.00 0.168 3.37 0.110 0.00 0.00 0.168 3.37 0.110 0.00 0.00 0.176 17.9 0.614 0.00 0.00 0.0238 6.87 0.054 0.00 0.00 0.0238 1.87 0.054 0.00 0.00 0.0238 6.87 0.058 0.00 0.00 0.0239 1.87 0.058 0.00 0.00 0.0239 1.87 0.0889 0.00 0.00 0.0239 1.87 0.0889 0.00 0.00 0.0239 1.87 0.0889 0.00 0.00 0.022 0.089 1.87 0.0889 0.00 0.00 0.022 0.00 0.158 0.00 0.00 0.022 0.00 0.158 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0							6.04	
PDMS				0.80				
PDMS								
PDMS				0.00				
PDMS 4 30 1.00 0.00 0.0232 4.63 0.0574 PDMS 4 30 1.00 0.00 0.0021 4.35 0.05756 PDMS 4 30 1.00 0.00 0.0146 15.3 0.150 0.80 0.00 0.00139 10.8 0.00790 0.80 0.00 0.0139 10.8 0.00790 0.80 0.00 0.0139 10.8 0.0090 0.0139 10.8 0.0090 0.0139 10.8 0.0090 0.0139 10.8 0.0090 0.0139 10.8 0.0090 0.0139 10.8 0.0090 0.0139 10.8 0.0090 0.0139 10.8 0.0090 0.0139 10.8 0.0090 0.0139 10.8 0.0090 0.0139 10.8 0.0090 0.0139 10.8 0.0090 0.0139 10.8 0.0090 0.0139 10.8 0.0090 0.0139 10.8 0.0090 0.0139 10.8 0.0090 0.0139 10.8 0.0090 0.0139 10.9 0.0090 0.188 4.32 0.154 4.6 1.00 0.00 0.00 0.188 4.32 0.154 4.6 1.00 0.00 0.00 0.188 4.32 0.154 4.6 1.00 0.00 0.00 0.188 4.32 0.154 4.6 1.00 0.00 0.00 0.188 4.32 0.154 4.6 1.00 0.00 0.00 0.188 4.32 0.154 4.6 1.00 0.00 0.00 0.188 4.32 0.154 4.6 1.00 0.00 0.00 0.222 1.7 0.0090 0.00 0.00 0.222 1.7 0.0090 0.00 0.00 0.222 1.7 0.0090 0.00 0.00 0.222 1.7 0.0090 0.00 0.00 0.222 1.7 0.0090 0.00 0.00 0.222 1.7 0.0090 0.00 0.00 0.222 1.7 0.0090 0.00 0.00 0.222 1.7 0.0090 0.00 0.00 0.222 1.7 0.0090 0.00 0.00 0.222 1.7 0.0090 0.00 0.00 0.222 1.7 0.0090 0.00 0.00 0.0090 0.00 0.0090 0.0090 0.00 0.009	PDMS	4	30				9.90 149	
PDMS 4 30 1.00 0.00 0.0232 4.85 0.0554 PDMS 4 30 1.00 0.00 0.00146 15.3 0.0556 0.80 0.00 0.0139 8.23 0.0759 0.80 0.00 0.0139 8.23 0.0759 0.80 0.00 0.0139 8.23 0.0759 0.80 0.00 0.0139 8.23 0.0759 0.80 0.00 0.0139 8.23 0.0759 0.80 0.00 0.0139 10.8 0.0100 0.0139 10.8 0.0100 0.0130 4.77 0.0443 0.0131 4.6 1.00 0.00 0.0188 4.32 0.1516 6 1.00 0.00 0.00 0.188 4.32 0.1516 6 1.00 0.00 0.00 0.188 4.32 0.1516 6 1.00 0.00 0.00 0.176 17.9 0.0443 0.80 1.00 0.00 0.228 6.87 0.289 11 1.00 0.00 0.022 18.4 0.0829 37 0.80 0.00 0.0232 18.4 0.0829 37 0.80 0.00 0.00 0.232 18.4 0.0829 38 0.00 0.00 0.00 0.232 18.4 0.0829 0.80 0.00 0.00 0.232 18.4 0.0829 0.80 0.00 0.00 0.222 18.4 0.0829 0.80 0.00 0.00 0.222 18.4 0.083 0.80 0.00 0.00 0.222 18.4 0.083 0.80 0.00 0.00 0.222 18.4 0.083 0.80 0.00 0.00 0.222 18.4 0.083 0.80 0.00 0.00 0.222 18.4 0.083 0.80 0.00 0.00 0.222 18.4 0.083 0.80 0.00 0.00 0.222 18.4 0.083 0.80 0.00 0.00 0.222 18.4 0.083 0.80 0.00 0.00 0.222 18.4 0.083 0.80 0.00 0.00 0.222 18.4 0.083 0.80 0.00 0.00 0.222 18.4 0.083 0.80 0.00 0.00 0.222 8.1 0.00 0.094 0.20 0.00 0.222 8.1 0.00 0.00 0.00 0.00 0.222 8.1 0.00 0.00 0.00 0.00 0.00 0 0.223 8.1 0.00 0.00 0.00 0.00 0 0.224 8.2 0.00 0.00 0.00 0.00 0 0.225 8.2 0.00 0.00 0.00 0.00 0 0.226 8.3 0.184 0.80 0.80 0.00 0.00 0.227 5.47 0.142 0.80 0.80 0.00 0.00 0.227 5.47 0.142 0.80 0.80 0.00 0.00 0.227 5.47 0.142 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0 0.80 0.00 0.0	LDMB	4	30				14.3	
PDMS								
PDMS 4 30 1.00 0.00 0.0146 15.3 0.156 0.80 0.00 0.00139 8.23 0.0739 0.060 0.00 0.0129 10.8 0.0100 0.000 0.0129 10.8 0.0100 0.000 0.0139 8.23 0.0739 0.000 0.000 0.0139 10.8 0.0100 0.000 0.0139 4.77 0.00443 0.000 0.0130 4.77 0.00443 0.000 0.0130 4.77 0.00443 0.000 0.0188 4.32 0.154 0.000 0.000 0.188 4.32 0.154 0.000 0.000 0.188 4.32 0.154 0.000 0.000 0.176 17.9 0.0014 0.000 0.000 0.176 17.9 0.200 0.144 0.000 0.000 0.176 17.9 0.200 0.144 0.000 0.000 0.222 5.637 0.229 18.7 0.0229 18.7							4.63	
PDMS 3 25 1.00 0.00 0.0129 10.8 0.0750 PDMS 3 25 1.00 0.00 0.0129 10.8 0.100 4 4 1.00 0.00 0.0138 4.77 0.0443 4 6 1.00 0.00 0.138 4.77 0.0443 4 6 1.00 0.00 0.1188 4.32 0.154 6 1.00 0.00 0.1176 17.9 0.614 6 1.00 0.00 0.128 6.87 0.269 8 1.00 0.00 0.228 6.87 0.269 8 1.00 0.00 0.228 6.87 0.269 8 1.00 0.00 0.229 1.87 0.0829 PBD-S** 4 25 1.00 0.00 0.292 1.87 0.0829 PBD-S** 4 25 1.00 0.00 0.222 7.93 0.203 0.60 0.00 0.213 6.43 0.162 0.60 0.00 0.224 6.74 0.166 0.40 0.00 0.192 8.07 0.193 1.00 0.05 0.245 6.83 0.184 0.80 0.05 0.232 6.04 0.158 0.80 0.05 0.232 6.04 0.158 0.80 0.05 0.232 6.04 0.158 0.80 0.05 0.232 6.04 0.158 0.80 0.05 0.232 6.04 0.158 0.80 0.05 0.232 6.04 0.158 0.80 0.05 0.232 6.04 0.158 0.80 0.05 0.232 6.04 0.158 0.80 0.00 0.219 7.68 0.196 0.20 0.00 0.029 8.12 0.033 0.80 0.05 0.232 8.12 0.033 0.80 0.05 0.232 8.12 0.033 0.80 0.05 0.232 8.12 0.033 0.80 0.00 0.00 0.00 0.229 8.12 0.033 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.0	DDMC		20				4.35	
PDMS 3 25 1.00 0.00 0.0130 4.77 0.0443 PDMS 3 25 1.00 0.00 0.0130 4.77 0.0443 4 1.00 0.00 0.0138 4.32 0.154 4 6 1.00 0.00 0.0188 4.32 0.154 4 6 1.00 0.00 0.0188 4.32 0.154 4 6 1.00 0.00 0.0188 4.32 0.154 6 6 1.00 0.00 0.0228 6.87 0.269 8 1.00 0.00 0.0228 6.87 0.269 8 1.00 0.00 0.0228 6.87 0.269 8 1.00 0.00 0.0290 2.64 0.113 11 1.00 0.00 0.0292 1.87 0.0829 PBD-S-h 4 25 1.00 0.00 0.230 9.34 0.388 PBD-S-h 4 25 1.00 0.00 0.222 7.93 0.203 0.80 0.00 0.213 6.43 0.162 0.80 0.00 0.212 5.21 0.130 0.80 0.00 0.212 5.21 0.130 0.80 0.05 0.225 6.83 0.184 0.80 0.05 0.227 5.47 0.142 0.80 0.05 0.227 5.47 0.142 0.80 0.05 0.231 12.0 0.313 0.80 0.10 0.237 7.77 0.206 0.80 0.10 0.237 7.77 0.206 0.80 0.10 0.232 8.12 0.213 0.80 0.10 0.232 8.12 0.213 0.80 0.10 0.232 8.12 0.213 0.80 0.10 0.232 8.12 0.213 0.80 0.10 0.232 8.12 0.213 0.80 0.10 0.237 7.77 0.206 0.80 0.00 0.117 2.22 0.368 PBD-G' 4 10 1.00 0.00 0.00 0.098 9.77 0.171 0.20 0.00 0.0093 8.111 1.018 0.80 0.00 0.00993 8.111 1.018 0.80 0.00 0.00993 8.111 1.018 0.80 0.00 0.00993 8.111 1.018 0.80 0.00 0.00993 8.111 1.019 0.80 0.00 0.0093 8.111 1.019 0.80 0.00 0.0093 8.111 1.019 0.80 0.00 0.0093 8.111 1.019 PBD-P' 4 10 1.00 0.00 0.011 2.25 0.034 0.80 0.00 0.011 2.25 0.034 0.80 0.00 0.0127 2.28 0.045 0.80 0.00 0.0127 2.28 0.0619 PBD-P' 4 10 1.00 0.00 0.011 2.72 0.608 0.80 0.00 0.0127 2.28 0.0619 0.80 0.00 0.0142 0.440 0.041 0.80 0.00 0.0142 0.440 0.041 0.80 0.00 0.0142 0.440 0.041 0.80 0.00 0.0133 1.61.1 0.343 0.80 0.00 0.0133 1.61.1 0.343 0.80 0.00 0.00 0.138 0.244 0.0649 0.80 0.00 0.00 0.138 0.240 0.0649 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.0	FDMS	4	30				15.3	
PDMS 3 25 1.00 0.00 0.158 3.37 0.110 4 1.00 0.00 0.158 4.32 0.154 4.66 1.00 0.00 0.188 4.32 0.154 4.66 1.00 0.00 0.188 4.32 0.154 6 1.00 0.00 0.176 17.9 0.614 6 1.00 0.00 0.0228 6.87 0.269 8 1.00 0.00 0.228 6.87 0.269 8 1.00 0.00 0.229 1.87 0.829 111 1.00 0.00 0.292 1.87 0.0829 137 1.00 0.00 0.292 1.87 0.0829 137 1.00 0.00 0.292 1.87 0.0829 14 2 5 1.00 0.00 0.222 7.93 0.203 0.60 0.00 0.213 6.43 0.162 0.60 0.00 0.1912 8.07 0.193 0.20 0.00 0.1912 8.07 0.193 0.20 0.00 0.192 8.07 0.193 0.20 0.00 0.2146 6.53 0.184 0.80 0.05 0.232 6.04 0.158 0.80 0.05 0.232 6.04 0.158 0.80 0.05 0.232 6.04 0.158 0.80 0.05 0.232 6.04 0.158 0.80 0.05 0.232 6.04 0.158 0.80 0.05 0.232 8.12 0.33 0.80 0.00 0.00 0.229 8.12 0.201 0.20 0.00 0.00 0.229 8.12 0.031 0.20 0.00 0.00 0.229 8.12 0.201 0.20 0.00 0.00 0.229 8.12 0.031 0.20 0.00 0.00 0.229 8.12 0.201 0.20 0.00 0.00 0.029 8.9 77 0.288 0.00 0.00 0.00 0.007 0.220 8.10 0.31 0.00 0.00 0.00 0.009 8.9 77 0.202 0.00 0.00 0.009 8.9 77 0.171 0.00 0.00 0.009 0.093 6.78 0.116 0.00 0.00 0.009 0.093 6.78 0.116 0.00 0.00 0.009 0.112 2.28 0.154 0.00 0.00 0.009 0.141 0.122 0.00 0.00 0.112 2.28 0.154 0.00 0.00 0.101 2.29 0.00 0.111 2.7.2 0.508 0.00 0.00 0.142 0.44 1.0 1.38 0.00 0.00 0.142 0.44 0.011 0.39 0.00 0.00 0.142 0.44 1.0 1.38 0.00 0.00 0.142 0.44 0.001 0.80 0.00 0.142 0.44 0.054 0.80 0.00 0.142 0.44 0.001 0.80 0.00 0.142 0.44 0.001 0.80 0.00 0.142 0.44 0.001 0.80 0.00 0.143 1.7.7 0.364 0.00 0.00 0.143 1.7.7 0.364 0.00 0.00 0.143 1.7.7 0.364 0.00 0.00 0.142 0.44 0.001 0.00 0.00 0.142 0.44 0.001 0.00 0.00 0.00 0.142 0.44 0.001 0.00 0.00 0.00 0.142 0.44 0.001 0.00 0.00 0.00 0.00 0.00 0.00 0.0							8.23	
PDMS 3 2 5 1.00 0.00 0.1588 3.37 0.110 4.6 1.00 0.00 0.188 4.32 0.154 4.6 1.00 0.00 0.108 17.9 0.614 4.6 1.00 0.00 0.00 0.176 17.9 0.614 6 1.00 0.00 0.0228 6.87 0.2689 8 1.00 0.00 0.0228 6.87 0.2689 8 1.00 0.00 0.0228 6.87 0.2689 8 1.10 0.00 0.00 0.228 6.87 0.2689 8 11 1 0.00 0.00 0.2292 1.87 0.0629 PBD-S** 4 25 1.00 0.00 0.230 9.34 0.368 PBD-S** 4 25 1.00 0.00 0.222 7.93 0.203 0.66 0.00 0.213 6.43 0.162 0.66 0.00 0.204 6.74 0.166 0.00 0.204 6.74 0.166 0.00 0.024 6.74 0.166 0.00 0.0212 5.21 0.130 0.20 0.00 0.212 5.21 0.130 0.80 0.05 0.232 6.04 0.158 0.80 0.05 0.232 6.04 0.158 0.80 0.05 0.232 6.04 0.158 0.80 0.05 0.232 6.04 0.158 0.60 0.00 0.0219 7.68 0.196 0.00 0.05 0.219 7.68 0.196 0.00 0.05 0.219 7.68 0.196 0.00 0.05 0.231 12.0 0.313 0.80 0.10 0.237 7.77 0.206 0.60 0.10 0.232 8.12 0.213 0.80 0.10 0.232 8.12 0.213 0.80 0.10 0.232 8.12 0.213 0.80 0.10 0.232 8.12 0.213 0.80 0.00 0.099 8.9.77 0.206 0.80 0.00 0.099 8.9.77 0.7171 0.80 0.00 0.099 8.9.77 0.1711 0.80 0.00 0.00 0.099 8.9.77 0.1711 0.80 0.00 0.00 0.099 8.9.77 0.1711 0.80 0.00 0.00 0.099 8.8111 1.0138 0.80 0.00 0.009 0.098 9.77 0.1711 0.80 0.00 0.009 0.112 2.28 0.455 0.60 0.00 0.009 0.112 2.28 0.455 0.60 0.00 0.009 0.112 2.28 0.4655 0.60 0.00 0.009 0.142 0.484 0.0172 0.20 0.00 0.00 0.142 0.484 0.0172 0.20 0.00 0.0142 0.484 0.0172 0.20 0.00 0.0142 0.484 0.0172 0.20 0.00 0.0142 0.484 0.0172 0.20 0.00 0.0142 0.484 0.0172 0.20 0.00 0.0142 0.484 0.0172 0.20 0.00 0.0142 0.484 0.0172 0.20 0.00 0.0142 0.484 0.0172 0.20 0.00 0.00 0.144 0.0073 0.384 0.0072 0.80 0.00 0.00 0.138 0.244 0.0688 0.00 0.00 0.003 0.134 0.10 0.0073 0.80 0.00 0.003 0.134 0.10 0.0073 0.80 0.00 0.000 0.134 0.10 0.0073 0.80 0.00 0.000 0.142 0.484 0.0172 0.80 0.00 0.000 0.142 0.445 0.0072 0.80 0.00 0.000 0.138 0.244 0.0688 0.00 0.000 0.142 0.427 0.844 0.0172 0.80 0.00 0.000 0.142 0.445 0.0072 0.80 0.00 0.000 0.144 0.107 0.0018 0.80 0.00 0.000 0.142 0.445 0.0072 0.80 0.000 0.000 0.142 0.445 0.0072 0.80 0.000 0.000 0.144 0.000 0.000 0.144 0.000 0.000 0.144 0.000 0.000 0.0000 0.144 0.000 0.0000 0.							10.8	
46 1.00 0.00 0.188 4.32 0.154 46 1.00 0.00 0.176 17.9 0.614 6 1.00 0.00 0.028 6.87 0.269 8 1.00 0.00 0.228 6.87 0.269 11 1 1.00 0.00 0.0292 1.87 0.089 37 1.00 0.00 0.222 7.93 0.203 37 1.00 0.00 0.222 7.93 0.203 4 25 1.00 0.00 0.0222 7.93 0.203 4 0.60 0.00 0.0213 6.43 0.162 0.60 0.00 0.0213 6.43 0.162 0.60 0.00 0.0214 6.74 0.166 0.60 0.00 0.0212 5.21 0.130 0.00 0.0212 5.21 0.130 0.00 0.0212 5.21 0.130 0.00 0.05 0.245 6.83 0.184 0.80 0.05 0.05 0.232 6.04 0.158 0.80 0.05 0.05 0.222 6.04 0.158 0.80 0.05 0.05 0.231 1.20 0.313 1.00 0.05 0.241 1.20 0.313 1.00 0.05 0.241 1.20 0.313 1.00 0.05 0.241 1.20 0.313 1.00 0.05 0.231 1.20 0.313 1.00 0.05 0.231 1.20 0.313 1.00 0.10 0.250 1.0.3 0.280 0.80 0.10 0.237 7.77 0.206 0.80 0.10 0.232 8.12 0.213 0.40 0.10 0.232 8.12 0.213 0.40 0.10 0.232 8.12 0.213 0.40 0.10 0.232 8.12 0.213 0.40 0.10 0.239 5.50 0.651 0.20 0.00 0.097 16.4 0.285 0.60 0.00 0.097 16.4 0.286 0.60 0.00 0.098 8.11 0.128 0.20 0.00 0.098 8.11 0.13 0.80 0.00 0.097 16.4 0.286 0.60 0.00 0.098 8.11 0.138 0.20 0.00 0.098 8.11 0.138 0.20 0.00 0.093 8.11 0.138 0.20 0.00 0.093 8.11 0.138 0.20 0.00 0.093 8.11 0.139 0.20 0.00 0.093 8.11 0.139 0.20 0.00 0.093 8.11 0.139 0.20 0.00 0.093 8.11 0.139 0.20 0.00 0.093 8.11 0.138 0.80 0.00 0.114 2.28 0.0619 0.80 0.00 0.114 2.28 0.0619 0.80 0.00 0.114 2.28 0.0619 0.80 0.00 0.142 0.84 0.0172 0.20 0.00 0.0142 0.84 0.0172 0.20 0.00 0.0143 1.77 0.364 0.00 0.0143 1.77 0.364 0.00 0.00 0.143 1.77 0.364 0.00 0.00 0.0143 1.77 0.364 0.00 0.00 0.0143 1.77 0.364 0.00 0.00 0.0143 1.77 0.364 0.00 0.00 0.00 0.138 2.54 0.514 0.00 0.00 0.00 0.00 0.138 2.54 0.514 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	DD140							
## A-6	PDMS		25				3.37	
8						0.188	4.32	
B				1.00		0.176	17.9	
S						0.228	6.87	0.269
PBD-8** 4 25 1.00 0.00 0.292 1.87 0.0829 PBD-8** 4 25 1.00 0.00 0.230 9.34 0.368 PBD-8** 4 25 1.00 0.00 0.222 7.93 0.203 0.60 0.00 0.222 7.93 0.203 0.60 0.00 0.213 6.43 0.162 0.60 0.00 0.204 6.74 0.166 0.40 0.00 0.192 8.07 0.193 0.20 0.00 0.192 8.07 0.193 0.20 0.00 0.192 5.21 0.130 1.00 0.05 0.245 6.83 0.184 0.80 0.05 0.232 6.04 0.158 0.80 0.05 0.227 5.47 0.142 0.40 0.05 0.227 5.47 0.142 0.20 0.00 0.231 12.0 0.313 0.20 0.00 0.10 0.231 12.0 0.313 0.80 0.10 0.237 7.77 0.206 0.80 0.10 0.237 0.777 0.206 0.80 0.10 0.237 0.777 0.206 0.80 0.10 0.232 8.12 0.213 0.40 0.10 0.229 25.0 0.651 0.80 0.00 0.10 0.229 25.0 0.651 0.80 0.00 0.00 0.097 16.4 0.229 0.80 0.60 0.00 0.097 16.4 0.229 0.80 0.60 0.00 0.098 9.77 0.171 0.80 0.60 0.00 0.098 9.77 0.171 0.80 0.60 0.00 0.098 9.77 0.171 0.80 0.60 0.00 0.098 9.77 0.171 0.80 0.60 0.00 0.098 9.77 0.171 0.80 0.60 0.00 0.098 9.77 0.171 0.80 0.00 0.011 2.2 2.0 0.0411 0.80 0.00 0.012 2.2 8.0 0.511 0.80 0.00 0.162 2.40 0.541 0.80 0.00 0.155 2.00 0.411 0.10 0.00 0.12 2.2 2.8 0.455 0.60 0.00 0.12 2.2 2.8 0.455 0.60 0.00 0.147 2.96 0.0619 0.80 0.00 0.147 2.96 0.0619 0.80 0.00 0.143 2.16 0.046 0.60 0.00 0.142 1.42 0.0991 0.80 0.00 0.143 2.16 0.046 0.80 0.00 0.142 1.42 0.0991 0.80 0.00 0.143 2.16 0.046 0.80 0.00 0.143 2.16 0.046 0.80 0.00 0.143 2.16 0.046 0.80 0.00 0.143 2.16 0.046 0.80 0.00 0.143 2.16 0.046 0.80 0.00 0.143 2.16 0.046 0.80 0.00 0.143 2.16 0.046 0.00 0.00 0.143 2.16 0.046 0.80 0.00 0.143 2.16 0.046 0.80 0.00 0.0143 2.16 0.046 0.80 0.00 0.0143 2.16 0.046 0.80 0.00 0.0143 2.16 0.046 0.80 0.00 0.0143 2.16 0.046 0.80 0.00 0.0143 2.16 0.046 0.80 0.00 0.0143 2.16 0.046 0.80 0.00 0.0143 2.16 0.046 0.80 0.00 0.0143 2.16 0.046 0.80 0.00 0.0143 2.16 0.046 0.00 0.00 0.143 2.16 0.046 0.00 0.00 0.143 2.16 0.046 0.00 0.00 0.143 2.16 0.046 0.00 0.00 0.143 2.16 0.046 0.00 0.00 0.143 2.16 0.046 0.00 0.00 0.143 2.16 0.046 0.00 0.00 0.143 2.16 0.046 0.00 0.00 0.143 2.16 0.046 0.00 0.00 0.143 2.16 0.046 0.00 0.00 0.143 2.16 0.046 0.00 0.00 0.143 2.16 0.046 0.00 0.00 0.143 2.16 0.046 0.00 0.00 0.0						0.269	2.64	
PBD-S*** 4 25 1.00 0.00 0.230 9.34 0.368 PBD-S*** 4 25 1.00 0.00 0.222 7.93 0.203 0.203 0.60 0.00 0.213 6.43 0.162 0.60 0.00 0.000 0.213 6.43 0.162 0.60 0.00 0.00 0.204 6.74 0.166 0.40 0.40 0.00 0.192 8.07 0.193 0.203 0.203 0.204 0.20 0.00 0.192 5.21 0.130 0.203 0.80 0.05 0.232 6.04 0.158 0.80 0.05 0.232 6.04 0.158 0.80 0.05 0.232 6.04 0.158 0.200 0.00 0.05 0.229 7.547 0.142 0.200 0.00 0.00 0.219 7.68 0.196 0.200 0.00 0.00 0.219 7.68 0.196 0.200 0.00 0.00 0.219 7.68 0.196 0.200 0.00 0.00 0.237 7.77 0.206 0.80 0.10 0.237 7.77 0.206 0.80 0.10 0.237 7.77 0.206 0.80 0.10 0.232 8.12 0.213 0.80 0.80 0.10 0.232 8.12 0.213 0.80 0.80 0.10 0.232 8.12 0.213 0.80 0.80 0.10 0.232 8.12 0.213 0.80 0.80 0.00 0.007 16.4 0.285 0.80 0.00 0.007 16.4 0.285 0.80 0.00 0.007 16.4 0.285 0.80 0.00 0.007 16.4 0.285 0.80 0.00 0.007 16.4 0.285 0.80 0.00 0.007 16.4 0.285 0.80 0.00 0.008 9.77 0.171 0.180 0.80 0.00 0.008 9.77 0.171 0.180 0.80 0.00 0.008 9.77 0.171 0.180 0.80 0.00 0.008 9.77 0.171 0.180 0.80 0.00 0.008 9.77 0.171 0.180 0.80 0.00 0.008 9.77 0.171 0.180 0.80 0.00 0.008 9.77 0.171 0.180 0.80 0.00 0.033 6.78 0.116 0.180 0.80 0.00 0.182 0.20 0.00 0.111 0.12 0.20 0.508 0.116 0.200 0.000 0.111 0.17 0.0218 0.80 0.00 0.111 0.17 0.528 0.455 0.465 0.80 0.00 0.147 0.966 0.004 0.000 0.147 0.966 0.004 0.000 0.142 0.84 0.0172 0.508 0.80 0.00 0.142 0.84 0.0172 0.508 0.80 0.00 0.142 0.84 0.0172 0.508 0.80 0.00 0.142 0.84 0.0172 0.508 0.80 0.00 0.142 0.84 0.0172 0.508 0.80 0.00 0.143 0.177 0.528 0.400 0.800 0.000 0.142 0.84 0.0172 0.508 0.800 0.00 0.142 0.84 0.0172 0.508 0.800 0.00 0.142 0.84 0.0172 0.508 0.800 0.00 0.142 0.84 0.0172 0.508 0.800 0.00 0.142 0.84 0.0172 0.508 0.800 0.00 0.142 0.84 0.0172 0.508 0.800 0.00 0.142 0.84 0.0172 0.508 0.800 0.00 0.142 0.84 0.0172 0.508 0.800 0.00 0.142 0.84 0.0172 0.508 0.800 0.00 0.142 0.84 0.0172 0.508 0.800 0.00 0.142 0.84 0.0172 0.508 0.800 0.00 0.142 0.84 0.0172 0.508 0.800 0.00 0.142 0.84 0.0172 0.508 0.800 0.00 0.142 0.508 0.000 0.008 0.143 0.000 0.000 0.153 0.158 0.000 0.000 0.153 0.158 0.000 0.				1.00	0.00	0.292	1.87	
PBD-S** 4 25 1.00 0.00 0.222 7.93 0.203 0.80 0.00 0.022 7.93 0.203 0.60 0.00 0.213 6.43 0.162 0.60 0.00 0.204 6.74 0.166 0.40 0.00 0.192 8.07 0.193 0.20 0.00 0.212 5.21 0.130 1.00 0.05 0.245 6.83 0.184 0.80 0.05 0.232 6.04 0.158 0.60 0.05 0.227 5.47 0.142 0.40 0.05 0.227 5.47 0.142 0.40 0.05 0.227 5.47 0.142 0.20 0.05 0.231 12.0 0.313 1.00 0.10 0.250 10.3 0.280 0.80 0.10 0.250 10.3 0.280 0.80 0.10 0.237 7.77 0.206 0.80 0.10 0.237 7.77 0.206 0.80 0.10 0.223 8.12 0.213 0.40 0.10 0.229 25.0 0.551 0.20 0.00 0.10 0.229 25.0 0.551 0.80 0.00 0.10 0.229 25.0 0.551 0.80 0.00 0.097 16.4 0.285 0.80 0.00 0.097 16.4 0.285 0.80 0.00 0.097 16.4 0.285 0.80 0.00 0.097 16.4 0.285 0.80 0.00 0.098 8.11 0.138 24 10 1.00 0.00 0.098 8.11 0.138 0.80 0.00 0.098 8.11 0.138 0.80 0.00 0.093 8.11 0.138 0.80 0.00 0.0127 22.8 0.455 0.40 0.00 0.093 8.11 0.138 0.80 0.00 0.162 24.0 0.541 0.80 0.00 0.0127 22.8 0.455 0.40 0.00 0.0127 22.8 0.455 0.40 0.00 0.0127 22.8 0.455 0.40 0.00 0.0127 22.8 0.455 0.40 0.00 0.0147 2.966 0.0619 0.80 0.00 0.142 1.42 0.0291 0.80 0.00 0.142 1.42 0.0291 0.80 0.00 0.0142 1.42 0.0291 0.80 0.00 0.0143 1.7.7 0.364 0.80 0.00 0.143 1.7.7 0.364 0.80 0.00 0.0143 2.16 0.0446 0.60 0.00 0.0142 1.42 0.0291 0.80 0.00 0.0143 1.7.7 0.364 0.80 0.00 0.0143 1.7.7 0.364 0.80 0.00 0.0143 1.7.7 0.364 0.80 0.00 0.0143 2.2.6 0.046 0.80 0.00 0.0143 1.7.7 0.364 0.80 0.00 0.0143 1.7.7 0.364 0.80 0.00 0.0143 1.7.7 0.364 0.80 0.00 0.0143 1.7.7 0.364 0.80 0.00 0.00 0.138 2.4 0.514 0.80 0.00 0.00 0.138 2.4 0.514 0.80 0.00 0.00 0.138 2.4 0.514 0.80 0.00 0.00 0.142 1.42 0.0291 0.80 0.00 0.00 0.143 1.7.7 0.364 0.80 0.00 0.00 0.143 1.7.7 0.364 0.80 0.00 0.00 0.143 1.7.7 0.364 0.80 0.00 0.00 0.144 1.00 0.00 0.73 0.80 0.00 0.00 0.144 1.00 0.00 0.73 0.80 0.00 0.00 0.144 1.00 0.00 0.73 0.80 0.00 0.00 0.144 1.00 0.00 0.73 0.80 0.00 0.00 0.144 1.00 0.00 0.73 0.80 0.00 0.00 0.144 1.00 0.00 0.73 0.80 0.00 0.00 0.144 1.00 0.00 0.73				1.00		0.230	9.34	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathrm{PBD}\text{-}\mathrm{S}^{*h}$	4	25	1.00		0.222	7.93	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.213	6.43	
PBD-Gi 4 10 1.00 0.00 0.192 8.07 0.193 0.20 0.20 0.00 0.212 5.21 0.130 0.80 0.80 0.05 0.235 6.83 0.184 0.80 0.60 0.05 0.227 5.47 0.142 0.40 0.05 0.219 7.68 0.196 0.196 0.80 0.05 0.231 12.0 0.313 12.0 0.313 1.00 0.10 0.250 10.3 0.280 0.80 0.10 0.232 8.12 0.213 0.80 0.10 0.232 8.12 0.213 0.60 0.60 0.10 0.232 8.12 0.213 0.40 0.60 0.10 0.232 8.12 0.213 0.660 0.10 0.229 25.0 0.651 0.20 0.10 0.20 0.10 0.220 0.10 0.220 0.20 0.						0.204	6.74	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.192	8.07	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.20		0.212	5.21	
PBD-G' 4 10 1.00 0.00 0.107 202 0.368 PBD-G' 4 10 1.00 0.00 0.00 0.107 202 0.368 PBD-F' 4 10 1.00 0.00 0.10 0.237 0.77 0.171						0.245	6.83	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.240	6.04	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.202		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.227	7.68	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.213		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.251		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.230		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.207	0.10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.232	0.12	
PBD-G ¹ 4 10 1.00 0.00 0.107 20.2 0.368 0.80 0.00 0.097 16.4 0.285 0.60 0.00 0.098 9.77 0.171 0.40 0.00 0.098 9.77 0.171 0.40 0.00 0.093 8.11 0.138 0.20 0.00 0.0093 6.78 0.116 0.80 0.00 0.093 6.78 0.116 0.80 0.00 0.135 20.0 0.411 0.60 0.00 0.135 20.0 0.411 0.60 0.00 0.127 22.8 0.455 0.40 0.00 0.111 27.2 0.508 0.40 0.00 0.111 27.2 0.508 0.40 0.00 0.111 27.2 0.508 0.60 0.00 0.101 29.7 0.528 0.60 0.00 0.147 2.96 0.619 0.60 0.00 0.143 2.16 0.0446 0.60 0.00 0.142 1.42 0.0291 0.60 0.60 0.00 0.142 1.42 0.0291 0.60 0.60 0.00 0.142 1.42 0.0291 0.60 0.60 0.00 0.144 1.07 0.0218 0.80 0.00 0.164 18.2 0.401 0.00 0.164 18.2 0.401 0.00 0.153 16.1 0.343 0.60 0.00 0.153 16.1 0.343 0.60 0.00 0.138 25.4 0.514 0.40 0.00 0.138 25.4 0.514 0.40 0.40 0.00 0.138 25.4 0.514 0.40 0.40 0.00 0.138 25.4 0.514 0.40 0.40 0.00 0.138 25.4 0.514 0.40 0.40 0.00 0.138 25.4 0.514 0.40 0.40 0.00 0.138 25.4 0.514 0.40 0.40 0.00 0.138 25.4 0.514 0.40 0.40 0.00 0.138 25.4 0.514 0.40 0.40 0.00 0.138 25.4 0.514 0.40 0.40 0.00 0.033 2.44 0.0668 0.60 0.00 0.073 3.98 0.102 0.274 0.80 0.00 0.073 3.98 0.102 0.274 0.80 0.00 0.073 3.98 0.102 0.40 0.40 0.00 0.073 3.98 0.102 0.60 0.00 0.073 3.98 0.102 0.40 0.40 0.00 0.073 3.98 0.102 0.40 0.40 0.00 0.073 3.98 0.102 0.40 0.40 0.00 0.073 3.98 0.102 0.40 0.40 0.00 0.073 3.98 0.102 0.40 0.40 0.00 0.073 3.98 0.102 0.40 0.40 0.00 0.073 3.98 0.102 0.40 0.40 0.00 0.073 3.98 0.102 0.40 0.40 0.00 0.003 3.44 0.0664 0.60 0.00 0.003 3.44 0.0664 0.60 0.00 0.004 3.74 0.116 0.60 0.00 0.004 3.74 0.116 0.60 0.00 0.005 3.14 0.0956 0.0664 0.00 0.005 3.14 0.0958 0.0056 0.005						0.229	25.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DDD Ci	4	10					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PBD-G	4	10			0.107	20.2	
PBD-P PB							16.4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.4	**					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		24	10					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
PBD-P ^j 4 10 1.00 0.00 0.101 29.7 0.528 PBD-P ^j 4 10 1.00 0.00 0.147 2.96 0.0619 0.80 0.00 0.143 2.16 0.0446 0.60 0.00 0.142 1.42 0.0291 0.40 0.00 0.142 0.84 0.0172 0.20 0.00 0.140 1.07 0.0218 24 10 1.00 0.00 0.164 18.2 0.401 0.80 0.00 0.153 16.1 0.343 0.60 0.00 0.143 17.7 0.364 0.60 0.00 0.143 17.7 0.364 0.40 0.00 0.138 25.4 0.514 0.20 0.00 0.138 25.4 0.514 0.20 0.00 0.138 25.4 0.514 0.20 0.00 0.038 2.44 0.0662 PIB 4 30 1.00 0.00 0.082 10.0 0.274 0.80 0.00 0.083 2.44 0.0668 0.60 0.00 0.073 3.98 0.102 0.60 0.00 0.073 3.98 0.102 PIB* 4 20 1.00 0.00 0.073 3.98 0.102 0.40 0.00 0.073 3.98 0.102 0.40 0.00 0.073 3.98 0.102 0.40 0.00 0.073 3.98 0.102 0.60 0.00 0.00 0.166 3.22 0.127 0.80 0.00 0.104 3.74 0.116 0.60 0.00 0.00 0.104 2.75 0.0856 0.40 0.00 0.00 0.104 2.75 0.0856 0.40 0.00 0.00 0.131 3.95 0.138 PIB 4 15 1.00 0.00 0.00 0.123 4.11 0.140 0.80 0.00 0.119 2.16 0.0725								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	nn:							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$PBD-P_i$	4	10					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0.0172
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		24	10			0.164		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.80	0.00			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.60				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.20	0.00			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PIB	4	30		0.00			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.00			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.60	0.00			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.40	0.00			
PIB 4 15 1.00 0.00 0.104 3.74 0.116 0.60 0.00 0.104 2.75 0.0856 0.40 0.00 0.095 3.14 0.0934 PIB 4 15 1.00 0.00 0.131 3.95 0.138 0.80 0.00 0.123 4.11 0.140 0.60 0.00 0.119 2.16 0.0725	PIB*	4	20					
PIB 4 15 1.00 0.00 0.104 2.75 0.0856 0.40 0.00 0.095 3.14 0.0934 0.80 0.80 0.80 0.00 0.131 3.95 0.138 0.80 0.80 0.00 0.123 4.11 0.140 0.60 0.60 0.00 0.119 2.16 0.0725								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
PIB 4 15 1.00 0.00 0.131 3.95 0.138 0.80 0.00 0.123 4.11 0.140 0.60 0.00 0.119 2.16 0.0725								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PIB	4	15					
0.60 0.00 0.119 2.16 0.0725								
$0.401 \qquad 0.00 \qquad 0.107 \qquad 1.21 \qquad 0.0385$								
POE 3 25 1.00 0.00 0.721 1.14 0.0423	POE	3	25					

Table II (Continued)

			1 able 1.	i (Continued	1)		
 polymer	ϕ^a	T, °C	v_2^b	5°	[f*] _{ph} , ^d N mm ⁻²	κ ^e	J^f
			0.597	0.00	0.637	1.58	0.0550
POE	3	25	0.565	0.00	0.549	2.26	0.0735
			0.488	0.00	0.337	14.8	0.376
			0.390	0.00	0.608	1.56	0.0531
POE*	3	25	0.429	0.00	0.260	1.76	0.0393
			0.325	0.00	0.240	2.52	0.0543
			0.220	0.00	0.259	0.960	0.0214
POE	3	25	0.457	0.00	0.275	3.41	0.0785
			0.341	0.00	0.345	1.19	0.0307
			0.291	0.00	0.314	1.29	0.0317
POP	3	25	1.00	0.00	1.25	0.39	0.035
POP	3	25	1.00	0.00	1.12	0.67	0.0577
POP	3	25	1.00	0.00	0.538	3.16	0.188
POP	3	25	1.00	0.00	0.248	2.17	0.0881
PTMO	3 3 3 3	25	1.00	0.00	0.691	1.83	0.0571
PCL	3	25	1.000	0.00	2.21	2.81	0.162
			0.775	0.00	2.63	1.68	0.105
			0.558	0.00	3.11	0.80	0.0547
PCL	3	25	1.000	0.00	2.27	0.41	0.0239
			0.853	0.00	2.16	0.60	0.0357
			0.459	0.00	2.25	0.42	0.0244
PCL	3	25	1.000	0.00	1.34	2.48	0.111
			0.766	0.00	1.21	4.76	0.202
			0.394	0.00	0.97	13.4	0.512
PCL	3	25	1.000	0.00	0.88	4.91	0.178
			0.623	0.00	0.83	9.38	0.363
			0.450	0.00	0.84	11.4	0.439
			0.402	0.00	0.85	11.8	0.428
PEA	4	25	1.00	0.00	0.075	5.05	0.161
PEA	4	25	1.00	0.00	0.055	6.47	0.176
PEA	4	25	1.00	0.00	0.043	10.0	0.241
PEA	4	25	1.00	0.00	0.044	6.83	0.167
PEA	4	25	1.00	0.00	0.031	15.6	0.319
PDMP	$\overline{4}$	30	1.00	0.00	0.069	6.47	0.106
PPEP	41	30	1.00	0.00	0.013	8.30	0.0477

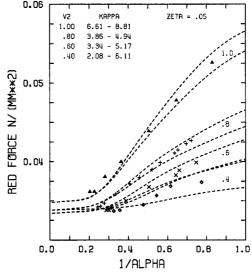

^a Cross-link functionality. ^b Volume fraction of polymer present in the network. ^c Parameter characterizing deformation of domains of constraint. ^dReduced stress in the limit at high elongation. ^eMeasure of entanglement constraints. ^fInterpenetration coefficient. ^gAsterisks in this and the following tables specify results shown graphically in the figures. h Sulfur cured. $^i\gamma$ radiation cured. j Peroxide cured.

Table III Values of $[f^*]_{ph}$ Averaged over Degrees of Swelling and Values of J Averaged over Degrees of Swelling and Degrees of Cross-Linkinga

polymer	φ	T, °C	[f*] _{ph} , N mm ⁻²	J
PDMS*	4	30	0.0320 ± 0.0004	0.0746 ± 0.0255
PDMS	4	30	0.0234 ± 0.0010	0.0891 ± 0.0621
PDMS	4	30	0.0136 ± 0.0008	0.0933 ± 0.0442
				0.0857 ± 0.0098^{b}
PBD-S*	4	25	0.209 ± 0.011	0.171 ± 0.029
PBD-G	4	25	0.098 ± 0.006	0.216 ± 0.107
	24	25	0.127 ± 0.024	0.489 ± 0.054
PBD-P	4	25	0.143 ± 0.003	0.0349 ± 0.0183
	24	25	0.147 ± 0.012	0.417 ± 0.071
PIB	4	30	0.077 ± 0.006	0.127 ± 0.099
PIB*	4	20	0.117 ± 0.033	0.106 ± 0.019
PIB	4	15	0.120 ± 0.010	0.0973 ± 0.050^{b}
				0.110 ± 0.015
POE	3	25	0.679 ± 0.059	0.0487 ± 0.0090
POE	3	25	0.498 ± 0.143	0.167 ± 0.181
POE*	3	25	0.253 ± 0.011	0.0383 ± 0.016
POE	3	25	0.311 ± 0.035	0.0470 ± 0.0273
				0.0753 ± 0.0613^{b}
POP	3	25		0.0922 ± 0.0675
PCL	3	25	2.65 ± 0.45	0.145 ± 0.72
PCL	3	25	2.23 ± 0.06	0.0377 ± 0.0090
PCL	3	25	1.17 ± 0.19	0.371 ± 0.282
PCL	3	25	0.85 ± 0.02	0.485 ± 0.172
				0.260 ± 0.204^b
PEA	4	25		0.213 ± 0.067

^a Parameter $\zeta = 0.0$. ^b Average J value for this polymer, at all degrees of cross-linking and swelling.

system within the same polymer grouping is graphed; see tables.) For each system, the chosen intercept of the reduced force at high elongation, $[f^*]_{ph}$, and the averaged

Figure 2. Same as Figure 1 but with $\zeta = 0.05$.

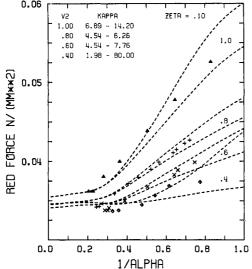

value of the low-extension intercepts, generated by using the extreme values of κ , are listed in columns 4 and 7 of Table V, respectively. These intercept values are compared with those obtained by using the linear Mooney-Rivlin (M-R) equation of the reduced force, $[f^*] = 2C_1 +$ $2C_2\alpha^{-1}$. The high- and low-extension M-R intercepts are given in columns 5 and 8 of Table V, and these intercepts, normalized by the corresponding theoretical intercept, are given in columns 6 and 9 of the same table. Absence of a high-elongation $[f^*]_{ph}$ value for a particular isotherm means that theoretical parameters could not be found

Table IV
Some Averaged Results and the Theoretical Parameters Giving the Best Fits of These Results

,			averaged results			alues of parameters	7
polymer	φ	v_2	[f*] _{ph} , N mm ⁻²	J	[f*] _{ph} , N mm ⁻²	K	J
PDMS*	4	1.00	0.0320	0.0856	0.0329-0.0336	5.80-5.76	0.0856
		0.80			0.0304-0.0311	6.03-6.01	0.0856
		0.60			0.0304-0.0307	6.03-6.01	0.0856
		0.40			0.0304-0.0309	6.01 - 5.97	0.0856
PDMS	4	1.00	0.0234	0.0856	0.0246	11.39	0.145
		0.80			0.0225-0.0234	7.02 - 6.86	0.0856
		0.60			0.0222	6.99	0.0849
		0.40			0.0222	5.60	0.0679
PDMS	4	1.00	0.0136	0.0856	0.0143	15.55	0.151
		0.80			0.0135-0.0140	9.07-8.86	0.0856
		0.60			0.0131-0.0133	9.08-9.16	0.0856
					0.0129	6.20	0.0573
DD110		0.40	0.450	0.110			
PDMS	3 4	1.00	0.158	0.110	0.156 - 0.162	3.40-3.33	0.110
	4	1.00	0.188	0.154	0.185 - 0.191	4.36 - 4.29	0.154
	4.6	1.00	0.176	0.614	0.173 - 0.178	18.0-17.7	0.614
	6	1.00	0.228	0.269	0.224 - 0.230	6.93 - 6.84	0.269
	0		0.220				0.113
	8	1.00	0.269	0.113	0.266-0.272	2.66-2.63	
	11	1.00	0.292	0.0829	0.289 - 0.295	1.88 - 1.86	0.0829
	37	1.00	0.230	0.368	0.228 - 0.232	9.38 - 9.32	0.368
PBD-S*	4	1.00	0.209	0.171	0.219	7.82	0.199
~	•	0.80	3.200	J	0.209-0.215	6.85-6.76	0.171
					0.200 0.210		
		0.60			0.199-0.206	7.03-6.91	0.171
		0.40			0.199 - 0.206	7.03 - 6.91	0.171
		0.20			0.202 - 0.207	6.98-6.90	0.171
PBD-G	4	1.00	0.0988	0.216	0.103	25.4	0.456
- DD-O	7	0.80	0.0000	J.210	0.100-0.103	12.2-12.0	0.216
		0.60			0.093 - 0.097	12.7 - 12.4	0.216
		0.40			0.093	9.42	0.161
		0.20			0.093	8.03	0.137
	24	1.00	0.127	0.489	******		
	24		0.121	0.405	0.100 0.100	04.0	0.490
		0.80			0.132-0.133	24.0	0.489
		0.60			0.122 - 0.128	25.0 - 24.5	0.489
		0.40					
		0.20					
PBD-P	4	1.00	0.143	0.0349	0.150	2.05	0.0431
1 00-1	**	0.00	0.140	0.0040			
		0.80			0.144-0.149	1.69-1.66	0.0349
		0.60			0.137 - 0.142	1.74 - 1.70	0.0349
		0.40			0.136	1.74	0.0349
		0.20			0.136 - 0.142	1.73 - 1.70	0.0349
	24	1.0	0.147	0.417	0.100 0.111	11.0 11.0	0.00.00
	24		0.147	0.417	0.140, 0.154	100 107	0.417
		0.80			0.149 - 0.154	19.9-19.5	0.417
		0.60			0.140 - 0.145	20.5 - 20.1	0.417
		0.40			0.140 - 0.142	20.4-20.3	0.417
		0.20					
PIB	4	1.00	0.075	0.101	0.079	9.77	0.261
LID	4		0.070	0.101			
		0.80			0.079	3.78	0.101
		0.60			0.072 - 0.075	3.96 - 3.87	0.101
		0.40			0.071	2.81	0.0707
PIB*	4	1.00	0.105	0.101	0.110	4.24	0.136
	7		0.100	J.101	0.103-0.108	3.26-3.17	0.101
IID.		0.80					
I ID.		0.60			0.100-0.103	3.29-3.25	0.101
I ID.						2.19	0.0668
		0.40			0.100		
	4	0.40	0.124	0.101	0.100 0.130	3.27	0.115
PIB	4	0.40 1.00	0.124	0.101	0.130	3.27	
	4	0.40 1.00 0.80	0.124	0.101	0.130 0.125-0.130	3.27 2.92–2.88	0.101
	4	0.40 1.00 0.80 0.60	0.124	0.101	0.130 0.125-0.130 0.113-0.118	3.27 2.92–2.88 3.07–3.03	$0.101 \\ 0.101$
PIB		0.40 1.00 0.80 0.60 0.40			0.130 0.125-0.130 0.113-0.118 0.112	3.27 2.92–2.88 3.07–3.03 0.87	0.101 0.101 0.0283
PIB		0.40 1.00 0.80 0.60 0.40	0.124 0.679		0.130 0.125-0.130 0.113-0.118	3.27 2.92–2.88 3.07–3.03	$0.101 \\ 0.101$
	4	0.40 1.00 0.80 0.60 0.40 1.000		0.101 0.0473	0.130 0.125-0.130 0.113-0.118 0.112 0.691-0.713	3.27 2.92–2.88 3.07–3.03 0.87 1.30–1.28	0.101 0.101 0.0283 0.0473
PIB POE	3	0.40 1.00 0.80 0.60 0.40 1.000 0.597	0.679	0.0473	0.130 0.125-0.130 0.113-0.118 0.112 0.691-0.713 0.645-0.669	3.27 2.92–2.88 3.07–3.03 0.87 1.30–1.28 1.35–1.32	0.101 0.101 0.0283 0.0473 0.0473
PIB		0.40 1.00 0.80 0.60 0.40 1.000 0.597 0.565			0.130 0.125-0.130 0.113-0.118 0.112 0.691-0.713 0.645-0.669 0.589-0.608	3.27 2.92–2.88 3.07–3.03 0.87 1.30–1.28 1.35–1.32 1.41–1.39	0.101 0.101 0.0283 0.0473 0.0473
PIB POE	3	0.40 1.00 0.80 0.60 0.40 1.000 0.597 0.565 0.488	0.679	0.0473	0.130 0.125-0.130 0.113-0.118 0.112 0.691-0.713 0.645-0.669 0.589-0.608 0.597-0.608	3.27 2.92-2.88 3.07-3.03 0.87 1.30-1.28 1.35-1.32 1.41-1.39 1.40-1.39	0.101 0.101 0.0283 0.0473 0.0473 0.0473
PIB POE	3	0.40 1.00 0.80 0.60 0.40 1.000 0.597 0.565	0.679	0.0473	0.130 0.125-0.130 0.113-0.118 0.112 0.691-0.713 0.645-0.669 0.589-0.608	3.27 2.92–2.88 3.07–3.03 0.87 1.30–1.28 1.35–1.32 1.41–1.39	0.101 0.101 0.0283 0.0473 0.0473
PIB POE POE	3	0.40 1.00 0.80 0.60 0.40 1.000 0.597 0.565 0.488 0.390	0.679 0.579	0.0473 0.0473	0.130 0.125-0.130 0.113-0.118 0.112 0.691-0.713 0.645-0.669 0.589-0.608 0.597-0.608 0.605-0.608	3.27 2.92-2.88 3.07-3.03 0.87 1.30-1.28 1.35-1.32 1.41-1.39 1.40-1.39	0.101 0.101 0.0283 0.0473 0.0473 0.0473 0.0743
PIB POE	3	0.40 1.00 0.80 0.60 0.40 1.000 0.597 0.565 0.488 0.390 0.429	0.679	0.0473	0.130 0.125-0.130 0.113-0.118 0.112 0.691-0.713 0.645-0.669 0.589-0.608 0.597-0.608 0.605-0.608 0.250-0.255	3.27 2.92-2.88 3.07-3.03 0.87 1.30-1.28 1.35-1.32 1.41-1.39 1.40-1.39 1.39 2.16-2.14	0.101 0.101 0.0288 0.0473 0.0473 0.0473 0.0473
PIB POE POE	3	0.40 1.00 0.80 0.60 0.40 1.000 0.597 0.565 0.488 0.390 0.429	0.679 0.579	0.0473 0.0473	$\begin{array}{c} 0.130 \\ 0.125-0.130 \\ 0.113-0.118 \\ 0.112 \\ 0.691-0.713 \\ 0.645-0.669 \\ 0.589-0.608 \\ 0.597-0.608 \\ 0.605-0.608 \\ 0.250-0.255 \\ 0.0242-0.249 \end{array}$	3.27 2.92-2.88 3.07-3.03 0.87 1.30-1.28 1.35-1.32 1.41-1.39 1.40-1.39 1.39 2.16-2.14 2.20-2.16	0.101 0.101 0.0283 0.0473 0.0473 0.0473 0.0473 0.0473
PIB POE POE POE*	3 3 3	0.40 1.00 0.80 0.60 0.40 1.000 0.597 0.565 0.488 0.390 0.429 0.325 0.220	0.679 0.579 0.250	0.0473 0.0473 0.0473	0.130 0.125-0.130 0.113-0.118 0.112 0.691-0.713 0.645-0.669 0.589-0.608 0.597-0.608 0.605-0.608 0.250-0.255 0.0242-0.249 0.237-0.244	3.27 2.92-2.88 3.07-3.03 0.87 1.30-1.28 1.35-1.32 1.41-1.39 1.40-1.39 1.39 2.16-2.14 2.20-2.16 2.22-2.19	0.101 0.101 0.0288 0.0478 0.0478 0.0478 0.0478 0.0478
PIB POE POE	3	0.40 1.00 0.80 0.60 0.40 1.000 0.597 0.565 0.488 0.390 0.429	0.679 0.579	0.0473 0.0473	$\begin{array}{c} 0.130 \\ 0.125-0.130 \\ 0.113-0.118 \\ 0.112 \\ 0.691-0.713 \\ 0.645-0.669 \\ 0.589-0.608 \\ 0.597-0.608 \\ 0.605-0.608 \\ 0.250-0.255 \\ 0.0242-0.249 \end{array}$	3.27 2.92-2.88 3.07-3.03 0.87 1.30-1.28 1.35-1.32 1.41-1.39 1.40-1.39 1.39 2.16-2.14 2.20-2.16	0.101 0.101 0.0283 0.0473 0.0473 0.0473 0.0473 0.0473
PIB POE POE POE*	3 3 3	0.40 1.00 0.80 0.60 0.40 1.000 0.597 0.565 0.488 0.390 0.429 0.325 0.220	0.679 0.579 0.250	0.0473 0.0473 0.0473	0.130 0.125-0.130 0.113-0.118 0.112 0.691-0.713 0.645-0.669 0.589-0.608 0.597-0.608 0.605-0.608 0.250-0.255 0.0242-0.249 0.237-0.244 0.313	3.27 2.92-2.88 3.07-3.03 0.87 1.30-1.28 1.35-1.32 1.41-1.39 1.40-1.39 1.39 2.16-2.14 2.20-2.16 2.22-2.19 1.78	0.101 0.101 0.0288 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473
PIB POE POE POE*	3 3 3	0.40 1.00 0.80 0.60 0.40 1.000 0.597 0.565 0.488 0.390 0.429 0.325 0.220 0.457 0.341	0.679 0.579 0.250	0.0473 0.0473 0.0473	0.130 0.125-0.130 0.113-0.118 0.112 0.691-0.713 0.645-0.669 0.589-0.608 0.597-0.608 0.605-0.608 0.250-0.255 0.0242-0.249 0.237-0.244 0.313 0.323-0.334	3.27 2.92-2.88 3.07-3.03 0.87 1.30-1.28 1.35-1.32 1.41-1.39 1.40-1.39 1.39 2.16-2.14 2.20-2.16 2.22-2.19 1.78 1.90-1.87	0.101 0.101 0.0288 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473
PIB POE POE* POE	3 3 3	0.40 1.00 0.80 0.60 0.40 1.000 0.597 0.565 0.488 0.390 0.429 0.325 0.220 0.457 0.341 0.291	0.679 0.579 0.250 0.330	0.0473 0.0473 0.0473	0.130 0.125-0.130 0.113-0.118 0.112 0.691-0.713 0.645-0.669 0.589-0.608 0.597-0.608 0.605-0.608 0.250-0.255 0.0242-0.249 0.237-0.244 0.313 0.323-0.334 0.313	3.27 2.92-2.88 3.07-3.03 0.87 1.30-1.28 1.35-1.32 1.41-1.39 1.40-1.39 1.39 2.16-2.14 2.20-2.16 2.22-2.19 1.78 1.90-1.87 1.63	0.101 0.101 0.0288 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0438 0.0473
PIB POE POE* POE POE	3 3 3 3	0.40 1.00 0.80 0.60 0.40 1.000 0.597 0.565 0.488 0.390 0.429 0.325 0.220 0.457 0.341 0.291 1.00	0.679 0.579 0.250 0.330	0.0473 0.0473 0.0473 0.0473	0.130 0.125-0.130 0.113-0.118 0.112 0.691-0.713 0.645-0.669 0.589-0.608 0.597-0.608 0.605-0.608 0.250-0.255 0.0242-0.249 0.237-0.244 0.313 0.323-0.334 0.313 1.23-1.27	3.27 2.92-2.88 3.07-3.03 0.87 1.30-1.28 1.35-1.32 1.41-1.39 1.40-1.39 1.39 2.16-2.14 2.20-2.16 2.22-2.19 1.78 1.90-1.87 1.63 0.391-0.384	0.101 0.101 0.0285 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0433 0.0400 0.0355
PIB POE POE* POE POP POP	3 3 3 3	0.40 1.00 0.80 0.60 0.40 1.000 0.597 0.565 0.488 0.390 0.429 0.325 0.220 0.457 0.341 0.291 1.00 1.00	0.679 0.579 0.250 0.330 1.25 1.12	0.0473 0.0473 0.0473 0.0473 0.0355 0.0577	0.130 0.125-0.130 0.113-0.118 0.112 0.691-0.713 0.645-0.669 0.589-0.608 0.597-0.608 0.605-0.608 0.250-0.255 0.0242-0.249 0.237-0.244 0.313 0.323-0.334 0.313 1.23-1.27 1.10-1.14	3.27 2.92-2.88 3.07-3.03 0.87 1.30-1.28 1.35-1.32 1.41-1.39 1.40-1.39 1.39 2.16-2.14 2.20-2.16 2.22-2.19 1.78 1.90-1.87 1.63 0.391-0.384 0.674-0.665	0.101 0.101 0.0288 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473
PIB POE POE* POE POE	3 3 3 3 3	0.40 1.00 0.80 0.60 0.40 1.000 0.597 0.565 0.488 0.390 0.429 0.325 0.220 0.457 0.341 0.291 1.00	0.679 0.579 0.250 0.330	0.0473 0.0473 0.0473 0.0473	0.130 0.125-0.130 0.113-0.118 0.112 0.691-0.713 0.645-0.669 0.589-0.608 0.597-0.608 0.605-0.608 0.250-0.255 0.0242-0.249 0.237-0.244 0.313 0.323-0.334 0.313 1.23-1.27	3.27 2.92-2.88 3.07-3.03 0.87 1.30-1.28 1.35-1.32 1.41-1.39 1.40-1.39 1.39 2.16-2.14 2.20-2.16 2.22-2.19 1.78 1.90-1.87 1.63 0.391-0.384	0.101 0.101 0.0285 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0433 0.0400 0.0355
PIB POE POE* POE POP POP POP	3 3 3 3 3	0.40 1.00 0.80 0.60 0.40 1.000 0.597 0.565 0.488 0.390 0.429 0.325 0.220 0.457 0.341 0.291 1.00 1.00	0.679 0.579 0.250 0.330 1.25 1.12 0.538	0.0473 0.0473 0.0473 0.0473 0.0355 0.0577 0.188	0.130 0.125-0.130 0.113-0.118 0.112 0.691-0.713 0.645-0.669 0.589-0.608 0.597-0.608 0.250-0.255 0.0242-0.249 0.237-0.244 0.313 0.323-0.334 0.313 1.23-1.27 1.10-1.14 0.532-0.546	3.27 2.92-2.88 3.07-3.03 0.87 1.30-1.28 1.35-1.32 1.41-1.39 1.40-1.39 2.16-2.14 2.20-2.16 2.22-2.19 1.78 1.90-1.87 1.63 0.391-0.384 0.674-0.665 3.16-3.11	0.101 0.101 0.0288 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0400 0.0358 0.0577 0.188
PIB POE POE* POE POP POP POP POP	3 3 3 3 3 3 3	0.40 1.00 0.80 0.60 0.40 1.000 0.597 0.565 0.488 0.390 0.429 0.325 0.220 0.457 0.341 0.291 1.00 1.00 1.00 1.00	0.679 0.579 0.250 0.330 1.25 1.12 0.538 0.248	0.0473 0.0473 0.0473 0.0473 0.0355 0.0577 0.188 0.0881	0.130 0.125-0.130 0.113-0.118 0.112 0.691-0.713 0.645-0.669 0.589-0.608 0.597-0.608 0.605-0.608 0.250-0.255 0.0242-0.249 0.237-0.244 0.313 0.323-0.334 0.313 1.23-1.27 1.10-1.14 0.532-0.546 0.244-0.252	3.27 2.92-2.88 3.07-3.03 0.87 1.30-1.28 1.35-1.32 1.41-1.39 1.40-1.39 1.39 2.16-2.14 2.20-2.16 2.22-2.19 1.78 1.90-1.87 1.63 0.391-0.384 0.674-0.665 3.16-3.11 2.19-2.16	0.101 0.101 0.0288 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0403 0.0403 0.0403 0.0408 0.0408 0.0408
PIB POE POE* POE POP POP POP	3 3 3 3 3	0.40 1.00 0.80 0.60 0.40 1.000 0.597 0.565 0.488 0.390 0.429 0.325 0.220 0.457 0.341 0.291 1.00 1.00	0.679 0.579 0.250 0.330 1.25 1.12 0.538	0.0473 0.0473 0.0473 0.0473 0.0355 0.0577 0.188	0.130 0.125-0.130 0.113-0.118 0.112 0.691-0.713 0.645-0.669 0.589-0.608 0.597-0.608 0.250-0.255 0.0242-0.249 0.237-0.244 0.313 0.323-0.334 0.313 1.23-1.27 1.10-1.14 0.532-0.546	3.27 2.92-2.88 3.07-3.03 0.87 1.30-1.28 1.35-1.32 1.41-1.39 1.40-1.39 2.16-2.14 2.20-2.16 2.22-2.19 1.78 1.90-1.87 1.63 0.391-0.384 0.674-0.665 3.16-3.11	0.101 0.101 0.0288 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0400 0.0358 0.0577 0.188

Table IV (Continued)

			averaged results		best values of parameters			
polymer	φ	$\overline{v_2}$	[f*] _{ph} , N mm ⁻²	J	[f*] _{ph} , N mm ⁻²	К	J	
		0.558			2.52	3.04	0.251	
PCL	3	1.000	2.23	0.277	2.12	0.83	0.0630	
		0.853			2.12	0.83	0.0630	
		0.459			2.12	1.08	0.0819	
PCL	3	1.000	1.17	0.277	1.15	4.53	0.253	
		0.766			1.18-1.23	4.89 - 4.79	0.277	
		0.394			1.23	5.63	0.325	
PCL	3	1.000	0.85	0.277	0.831 - 0.852	5.82 - 5.75	0.277	
		0.623			0.893	7.53	0.371	
		0.450			0.893	9.20	0.453	
		0.402			0.893	9.72	0.479	
PEA	4	1.00	0.075	0.161	0.071 - 0.076	5.20 - 5.03	0.161	
PEA	4	1.00	0.055	0.176	0.052 - 0.055	6.66 - 6.55	0.176	
PEA	4	1.00	0.043	0.241	0.041 - 0.043	10.2-9.99	0.241	
PEA	4	1.00	0.044	0.167	0.042 - 0.044	7.00 - 6.83	0.167	
PEA	4	1.00	0.031	0.319	0.029-0.031	16.2 - 15.6	0.319	
PDMP	4	1.00	0.069	0.106	0.067 - 0.072	6.57 - 6.36	0.106	
PPEP	4	1.00	0.013	0.0477	0.013	8.33	0.0477	

Figure 3. Same as Figure 1 but with $\zeta = 0.10$.

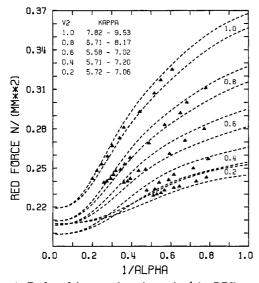
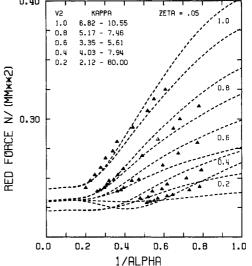



Figure 4. Reduced force as functions of α^{-1} for PBD swollen to varying degrees with 1,2,4-trichlorobenzene. The points represent experimental results of Mark et al.⁶ for specimens of a sample cross-linked with sulfur and swollen to the extents indicated by the values of the volume fraction to the right of each isotherm and also in the inset in the upper left of this figure. The dashed curves were calculated according to theory with $\zeta=0.0$ and κ values given in the inset.

within acceptable error limits.

The extent to which the ratio of high-elongation inter-

Figure 5. Same as Figure 4 but with $\zeta = 0.05$.

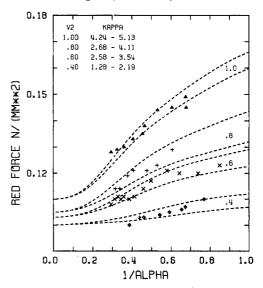
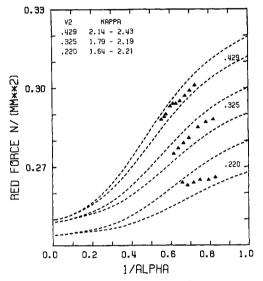


Figure 6. Reduced force as functions of α^{-1} for PIB swollen to varying degrees with 1,2,4-trichlorobenzene. The points represent experimental results of Rahalkar and Mark⁹ for specimens swollen to the extents indicated by the values of the volume fraction to the right of each isotherm and also in the inset in the upper left of this figure. The dashed curves were calculated according to theory with $\zeta=0.0$ and κ values given in the inset.


cepts departs from unity is a measure of the error in the estimate of the cycle rank of a network arising from a Mooney-Rivlin treatment of stress-strain data. Although

						low elongation			
				high elongation			$2C_1 + 2C_2$,	$\frac{(2C_1 + 2C_2)}{2}$	
polymer	φ	v_2	$[f^*]_{\rm ph}$, N mm ⁻²		$2C_1/[f^*]_{ph}$	$[f^*]_{\alpha=1}$, N mm ⁻²	N mm ⁻²	$[f^*]_{\alpha=1}$	
PDMS*	4	1.00	0.0329	0.0304	0.924	0.0520	0.0571	1.10	
		0.80	0.0311	0.0298	0.958	0.0450	0.0476	1.06	
		0.60	0.0307	0.0299	0.0974	0.0410	0.0433	1.06	
		0.40	0.0309	0.0305	0.987	0.0385	0.0398	1.03	
PDMS	4	1.00	0.0246	0.0218	0.886	0.0430	0.0533	1.24	
		0.80	0.0234	0.0220	0.940	0.0345	0.0365	1.06	
		0.60	0.0222	0.0218	0.982	0.0315	0.0324	1.03	
		0.40	0.0222	0.0208	0.937	0.0280	0.0290	1.04	
PDMS	4	1.00	0.0143	0.0118	0.825	0.0255	0.0364	1.43	
		0.80	0.0136	0.0121	0.890	0.0220	0.0255	1.16	
		0.60	0.0133	0.0117	0.880	0.0195	0.0230	1.18	
		0.40	0.0129	0.0126	0.977	0.0165	0.0168	1.02	
PDMS	3	1.00	0.158	0.183	1.16		0.275		
	4	1.00	0.188	0.196	1.04		0.279		
	4.6	1.00	0.176	0.217	1.23		0.295		
	6	1.00	0.228	0.241	1.06		0.298		
	8	1.00	0.269	0.277	1.03		0.297		
	11	1.00	0.292	0.287	0.983		0.298		
	37	1.00	0.230	0.232	1.01		0.240		
PBD-S*	4	1.00	0.219	0.203	0.927	0.362	0.406	1.12	
	-	0.80	0.209	0.202	0.967	0.321	0.343	1.07	
		0.60	0.206	0.202	0.981	0.289	0.302	1.05	
		0.40	0.199	0.196	0.985	0.261	0.272	1.03	
		0.40	0.199	0.196	0.986	0.249	0.272	1.04	
DDD C		1.00	0.207			0.249		1.02	
PBD-G	4	1.00	0.103	0.0904	0.878		0.280		
		0.80	0.100	0.0864	0.864		0.210		
		0.60	0.097	0.0915	0.943		0.167		
		0.40	0.093	0.0933	1.00		0.135		
		0.20	0.093	0.0878	0.944		0.117		
	24	1.00		0.0904			0.280		
		0.80	0.132	0.0868	0.658		0.210		
		0.60	0.127	0.0915	0.720		0.167		
		0.40		0.0933			0.135		
		0.20		0.0878			0.117		
PBD-P	4	1.00	0.150	0.142	0.947		0.228		
		0.80	0.144	0.140	0.972		0.178		
		0.60	0.142	0.138	0.972		0.160		
		0.40	0.136	0.138	0.01		0.150		
		0.20	0.142	0.135	0.951		0.144		
	24	1.00	*****	0.142	0.002		0.228		
		0.80	0.149	0.140	0.940		0.178		
		0.60	0.145	0.138	0.952		0.160		
		0.40	0.142	0.138	0.972		0.150		
		0.20	0.142	0.135	0.012		0.144		
מום	4		0.079	0.133 0.072	0.01	0.197		1 10	
PIB	4	1.00			0.91	0.137	0.159	1.16	
		0.80	0.079	0.083	1.05	0.106	0.103	0.972	
		0.60	0.075	0.074	0.99	0.0925	0.0953	1.03	
≁מזח	4	0.40	0.071	0.073	1.03	0.0795	0.0777	0.977	
PIB*	4	1.00	0.110	0.113	1.03	0.163	0.165	1.01	
		0.80	0.105	0.0976	0.930	0.138	0.148	1.07	
		0.60	0.103	0.104	1.01	0.126	0.131	1.03	
DID		0.40	0.100	0.0905	0.905	0.110	0.115	1.04	
PIB	4	1.00	0.130	0.128	0.985	0.187	0.194	1.04	
		0.80	0.125	0.123	0.984	0.167	0.170	1.02	
		0.60	0.118	0.114	0.966	0.140	0.145	1.04	
		0.40	0.112	0.108	0.964	0.115	0.114	0.991	
POE	3	1.000	0.691	0.744	1.08	0.934	0.934	1.00	
		0.597	0.669	0.660	0.987	0.788	0.795	1.01	
POE	3	0.565	0.589	0.613	1.04	0.722	0.722	1.00	
		0.488	0.597	0.575	0.963	0.720	0.732	1.02	
		0.390	0.605	0.593	0.980	0.710	0.715	1.01	
POE*	3	0.429	0.250	0.251	1.00	0.316	0.320	1.01	
		0.325	0.249	0.231	0.928	0.295	0.296	1,00	
		0.220	0.244	0.263	1.08	0.274	0.266	0.971	
POE	3	0.457	0.313	0.280	0.895	0.373	0.390	1.05	
	~	0.341	0.330	0.329	0.997	0.388	0.402	1.04	
			0.313	0.310	0.990	0.346	0.348	1.01	
		0.291				3.010		#10 F	
PΩP	3	0.291			0.992	1.37	1.37	1.00	
	3	1.00	1.25	1.24	0.992 0.973	1.37 1.32	1.37 1.33	1.00	
POP	3	1.00 1.00	$1.25 \\ 1.12$	1.24 1.09	0.973	1.32	1.33	1.011	
POP POP	3 3	1.00 1.00 1.00	1.25 1.12 0.538	1.24 1.09 0.628	0.973 1.17	$\frac{1.32}{0.932}$	1.33 0.929	$1.011 \\ 0.997$	
POP POP POP POP PTMO	3	1.00 1.00	$1.25 \\ 1.12$	1.24 1.09	0.973	1.32	1.33	1.011	

Table V (Continued)

						low elongation		
			high elongation				$2C_1 + 2C_2$,	$\frac{(2C_1 + 2C_2)}{}$
polymer	φ	v_2	[f*] _{ph} , N mm ⁻²	$2C_1$, N mm ⁻²	$2C_1/[f^*]_{ m ph}$	$[f^*]_{\alpha=1}$, N mm ⁻²	N mm ⁻²	$[f^*]_{\alpha=1}$
PCL	3	1.000	2.52	2.47	0.980		3.70	
		0.775	2.52	2.87	1.14		3.48	
		0.558	2.52	2.98	1.18		3.47	
PCL	3	1.000	2.12	2.15	1.01		2.53	
		0.853	2.12	2.06	0.972		2.48	
		0.459	2.12	2.19	1.03		2.34	
PCL	3	1.000	1.15	1.40	1.22		2.18	
-		0.766	1.18	1.39	1.18		1.99	
		0.394	1.23	1.33	1.08		1.99	
PCL	3	1.000	0.852	0.957	1.12		1.81	
		0.623	0.893	0.861	0.964		1.87	
		0.450	0.893	0.788	0.882		1.83	
		0.402	0.893	0.800	0.896		1.79	
PEA	4	1.00	0.075	0.081	1.08		0.115	
PEA	4	1.00	0.055	0.046	0.84		0.105	
PEA	4	1.00	0.043	0.036	0.84		0.0935	
PEA	4	1.00	0.044	0.037	0.84		0.0828	
PEA	$\overset{\circ}{4}$	1.00	0.031	0.018	0.58		0.0899	
PDMP	4	1.00	0.069	0.0527	0.76		0.118	
PPEP	4	1.00	0.013	0.00307	0.24	0.0213	0.0243	1.14

^a Intercepts obtained from $[f^*] = 2C_1 + 2D_{2\alpha}^{-1}$.

Figure 7. Reduced force as functions of α^{-1} for POE swollen to varying degrees with phenylacetate. The points represent experimental results of Mark and Sung¹⁰ for specimens of a sample cross-linked with an aromatic triisocyanate and swollen to the extents indicated by the values of the volume fraction to the right of each isotherm and also in the inset in the upper left of this figure. The dashed curves were calculated according to theory with $\zeta = 0.0$ and κ values given in the inset.

this ratio is generally close to 1, there are both overestimates and underestimates, as expressed by ratios above and below 1, and in some instances significant departures from 1 are found.

Ratios of the low-elongation intercepts are uniformly close to 1, implying that little difference is observed between the results of the linear extrapolation and of a more detailed theoretical approach in the limit of $\alpha = 1$. Table V contains blanks for isotherms that were not theoretically investigated in the $\alpha = 1$ limit.

An examination of the $\zeta = 0$ curves reveals two details that are valid for every system studied as a function of dilution. First, a high-extension intercept, $[f^*]_{ph}$, can be found within $\pm 5\%$ of the mean $[f^*]_{ph}$ value for each network. It is found to be very nearly independent of the degree of swelling. Secondly, as the polymer volume

fraction decreases, the κ values required to fit the experimental data also decrease. While reasonable values for the interpenetration parameter, J, for a given polymer can be determined, this parameter is not a universal constant but depends upon the nature of the polymer studied.

Conclusions

- (1) A $[f^*]_{ph}$ value ($\pm 5\%$) proportional to the cycle rank of the network which is independent of polymer volume fraction is found to describe reduced-force data at α^{-1}
- (2) Increasing \(\zeta \) above 0 does not improve the theoretical fit to reduced-force data.
- (3) In general, as the polymer volume fraction decreases, the value of κ required to theoretically describe experimental data also decreases.
- (4) An interpenetration parameter, J, can be determined for a given polymer; however, it is not a universal constant for every polymer.

Acknowledgment. We are indebted to Professor P. J. Flory for valuable comments and suggestions during the course of this work. We also thank IBM for their financial support.

Registry No. PEA, 9003-32-1; PDMP, 60998-43-8; PPEP, 66805-77-4.

References and Notes

- (1) Flory, P. J. Proc. R. Soc. London, A 1976, 351, 351.
- Flory, P. J.; Erman, B. *Macromolecules* 1982, 15, 800. Erman, B.; Flory, P. J. *Macromolecules* 1982, 15, 806.
- Chiu, D. S.; Mark, J. E. Colloid Polym. Sci. 1977, 255, 644. Llorente, M. A.; Mark, J. E. Macromolecules 1980, 13, 681.
- (6) Chiu, D. S.; Su, T.-K.; Mark, J. E. Macromolecules 1977, 10, 1110.
- Van der Hoff, B. M. E. Ind. Eng. Chem. Prod. Res. Dev. 1963,
- (10)
- 2, 273.

 Brotzman, R. W.; Flory, P. J. Macromolecules, submitted. Rahalkar, R. R.; Mark, J. E. Polym. J. (Tokyo) 1979, 11, 133.

 Mark, J. E.; Sung, P.-H. Eur. Polym. J. 1980, 16, 1223.

 Sung, P.-H.; Mark, J. E. J. Polym. Sci. Polym. Phys. Ed. 1981,
- (12) Sung, P.-H.; Mark, J. E. Polym. J. (Tokyo) 1980, 12, 835.
 (13) Mark, J. E.; Kato M.; Ko, J. H. J. Polym. Sci., Part C 1976,
- (14) Mark, J. E.; Yu, C. U. J. Polym. Sci., Polym. Phys. Ed. 1977, 15. 371.